从2016到2019,根据多年教学和研究经验,邱锡鹏教授完成了深度学习教科书《神经网络与深度学习》!目前这本教科书的全书内容、习题和PPT资源都已经开放。
这本书从基础到研究前沿介绍了深度学习的核心概念与理论。我们不仅能了解到全连接、卷积和循环等基本深度神经网络网络,同时还能学习到前沿的 Transformer 等模型,当然所需的数学基础在附录也都是有提供的。这本 446 页的深度学习开放教科书,足够我们了解 DL 的前前后后。
邱老师是复旦大学计算机科学技术学院的副教授与博士生导师,他目前主要从事自然语言处理、深度学习等方向的研究,在 ACL、EMNLP、AAAI、IJCAI 等计算机学会 A/B 类期刊、会议上发表 50 余篇学术论文。此外,邱老师还是 FudanNLP 的开发者和 FastNLP 的负责人,这两个开源项目都旨在提供更好的 NLP 工具。
如下我们将截取原书部分内容与练习题,希望其能介绍整体结构与大致内容。作为一本优秀的深度学习中文教科书,它真的值得大家下载与阅读。
前言
本书的写作目的是使得读者能够掌握神经网络与深度学习技术的基本原 理,知其然还要知其所以然。全书共 15 章。第 1 章是绪论,介绍人工智能、机器 学习、深度学习的概要,使读者对相关知识进行全面的了解。第 2、3 章介绍了 机器学习的基础知识。
第 4、5、6 章分别讲述三种主要的神经网络模型:前馈神 经网络、卷积神经网络和循环神经网络。第 7 章介绍神经网络的优化与正则化方 法。第 8 章介绍神经网络中的注意力机制和外部记忆。第 9 章简要介绍了一些无 监督学习方法。第 10 章中介绍一些和模型独立的机器学习方法:集成学习、协 同学习、自学习、多任务学习、迁移学习、终身学习、小样本学习、元学习等。这些都是目前深度学习的难点和热点问题。
第 11 章介绍了概率图模型的基本概 念,为后面的章节进行铺垫。第 12 章介绍两种早期的深度学习模型:玻尔兹曼 机和深度信念网络。第 13 章介绍最近两年发展十分迅速的深度生成模型:变分自编码器和对抗生成网络。第 14 章介绍了深度强化学习的知识。第 15 章介绍了 应用十分广泛的序列生成模型。
2015 年复旦大学计算机学院开设了《神经网络与深度学习》课程,当时还 没有关于深度学习的系统介绍。讲好深度学习并不是一件容易的事,课程涉及 知识点非常多并且比较杂乱,也和实践结合十分紧密。作为任课教师,我尝试 将梳理了深度学习的知识体系,并写了一本讲义放在网络上。
简要目录如下:
第一部分 入门篇
第二部分 基础模型
第三部分 进阶模型
当然实际的书籍目录会展示更多的细节,读者可下载原书查阅:
《神经网络与深度学习》中文高清PDF,需要的可以直接扫码进群领资料
内容
对于内容而言,其实是需要读者自己体会的,因此我们截取书籍的一小节内容,读者可拜读拜读。
随书代码与练习题
除了提供一些示例代码,例如 PyTorch 或 TensorFlow 的分类回归问题,邱老师还提供了很多练习题,目前主要有第 3、4、5、6、11、14 章的内容。例如在第六章循环神经网络中,其练习题为使用循环神经网络实现唐诗生成任务。
该题目的要求为,补全程序前面的 3 个空和生成诗歌的一段代码,并以「日 、红 、山 、夜 、湖、海 、月」词汇开头生成诗词。
该项目提供了对应的数据和部分代码,我们只需要根据要求填补完全就行了,例如在诗词生成的 TensorFlow 实现中,我们需要补全的模型架构代码为:
其它还有很多练习,包括受限玻尔兹曼机、混合高斯模型、黑白棋游戏(强化学习)和卷积神经网络等等。
如果你是一个机器学习初学者或者已经是机器学习领域的开发人员,想更加深入地理解机器学习算法背后的数学原理,那么《神经网络与深度学习》这本书绝对是一个不错的选择。
《神经网络与深度学习》中文高清PDF,需要的可以直接扫码进群领资料
免费分享一些我整理的人工智能学习资料给大家,整理了很久,非常全面。包括人工智能基础入门视频+AI常用框架实战视频、机器学习、深度学习与神经网络等视频、课件源码、毕设项目、AI热门论文等。
下面是截图,扫码进群免费领取:扫码进群领资料
我会在群里与朋友们定期分享人工智能的发展就业情况与相关资料。
最后祝大家天天进步!!
评论留言